
Minueto

Student Software Engineering Project Courses Become Fun

Alexandre Denault and Jörg Kienzle
Software Engineering Laboratory, School of Computer Science

McGill University, Montreal, Quebec, Canada
Alexandre.Denault@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

Abstract

This paper presents Minueto, a cross-platform, Java-based
game development framework specifically designed for un-
dergraduate software engineering project courses. Min-
ueto has been designed to hide complex graphics pro-
gramming (full-screen mode, double-buffering, hardware
acceleration), and keyboard/mouse input handling behind
simple-to-use objects. Despite of being implemented in
pure Java, Minueto achieves frame rates of over 60 frames-
per-second on mid-range Windows, Linux and Macintosh
systems. The large quantity of documentation, tutorials
and sample code allows students familiar with basic Java
programming to start developing games after a very short
learning period. The effectiveness of Minueto is discussed
based on 3 years of student evaluation.

1. Introduction

Most university computer science curriculae includes
at least one project course, where undergraduate students
have to implement a considerable piece of software. The
School of Computer Science at McGill University is no ex-
ception. In the course “COMP-361 Systems Development
Project”, students must “implement a large body of soft-
ware” to gain substantial hands-on experience in object-
oriented software development, multithreaded program-
ming and distributed systems. The work is performed in
groups of typically 4 or 5 students, which, as a side effect,
improves the students’ group communication and organiz-
ing skills.

Finding project topics which are interesting, challeng-
ing, motivating and feasible to complete in one semester
is a difficult task. In order to prevent students to “reuse”
source code of previous years, the application to develop
has to be considerably different from year to year. On
the other hand, the applications developed in the following

year should be sufficiently similar to the previous one in or-
der to keep the overhead for the professor and the teaching
assistants under control.

It turns out that computer games, especially simple 2D
action or turn-based games, are applications that are par-
ticularly well suited for a semester-long student project.
Games are ideal for object-oriented analysis and design,
since very often games contain abstractions of real-world
objects (for instance, players, items, cities, space ships,
planets, etc.) with well defined relationships and responsi-
bilities (for instance transporter ships can carry land units,
wormholes connect a set of star systems). Also, game
rules are usually intuitive, not too complicated and there-
fore easy to understand. Local rules, i.e., game rules for
specific game objects, can often be encapsulated within the
object itself (for instance, a tank can make sure that it does
not move over water, an airplane crashes when it runs out
of fuel, etc.). Finally, computer games are very popular
among students.

Using game programming to teach software engineering
is not a new idea. Rudy Rucker, of San José State Univer-
sity, teaches software engineering using games as context
for implementation [1]. Joe Warren, of Rice University,
teaches a class where students are required to work as a
team to complete a large-scale game project [2].

Creating a game, however, is very challenging. In ad-
dition to implementing the game rules correctly, the user
interface of a game has to be intuitive, appealing and re-
sponsive. Performance is a key issue. Sluggish games are
not “fun”. In order to achieve smooth animations, screen
updates of around 30 frames-per-second (fps) are required.
Achieving such performance requires using advanced tech-
niques such as double buffering, and in-depth technical
knowledge of how to exploit hardware acceleration pro-
vided by modern graphic cards.

This article presents Minueto, a game development
framework targeted at computer science / software engi-
neering undergraduates. It allows students to rapidly de-

velop non-trivial games by simplifying game-programming
concerns such as graphics and player input. As a result, stu-
dents spend most of their time acquiring the essential skills
of software development, namely object-oriented analysis
and design, and stay motivated thanks to the “fun” factor of
game development.

The rest of the paper is structured as follows. Section 2
lists the goals that were established for Minueto. Section 3
presents Minueto’s architecture. Section 4 shows a detailed
performance evaluation of Minueto based on two bench-
marks. Section 5 describes Minueto’s extensive documen-
tation. Section 6 shows the beneficial effects Minueto had
on the students of the McGill software engineering project
course. Section 7 discusses related work, and the last sec-
tion draws some conclusions.

2. Goals Of Minueto

To be suitable for game development in an academic un-
dergraduate setting, the following goals were established
for the Minueto framework:

1. The framework should be easy to learn, and provide
fast results. Our experience has shown that students
are more likely to use a framework if they get visually
attractive initial results within a few hours of program-
ming.

2. The framework should be easy to install and platform
independent. Although the School of Computer Sci-
ence at McGill provides all the resources students re-
quire to complete a game programming project, some
students want to work at home on their own machines.
Platform independence also makes it easier to offer
downloadable versions of the games of previous years
on the course web page.

3. The framework should provide reasonable perfor-
mance, i.e. at least 30 fps screen updates on current
mid-range computer systems.

4. The framework should not be game specific. Since the
course project changes every year, it is important that
the framework be flexible.

To answer requirements 1 and 4, it has been decided that
Minueto only provides basic game programming features.
Frameworks with an extensive feature set are difficult to
learn, mostly because of the sheer number of options of-
fered to the programmer. Most of the time, advanced fea-
tures are incorporated into frameworks to provide game-
specific functionality. We decided with Minueto to provide
only the basic building blocks, but to make sure that the
students can use them to build more advanced features, if
necessary.

To address requirement 1, extensive and intuitive docu-
mentation for Minueto has been developed (see section 5).

Finally, to address requirement 1 and 2, Minueto has
been developed in Java [3]. Java is currently the program-
ming language used in most undergraduate classes offered
at the School of Computer Science of McGill University.
It is inherently cross-platform, and therefore runs among
others on Windows, Linux and Macintosh systems. De-
spite the fact that Java uses garbage collection and runs on
a virtual machine, we were able to achieve impressive per-
formance (see section 4) and meet requirement 3.

3. Minueto Architecture

Minueto is designed to be a modular framework. Its core
components include a 2D graphics engine and game input
handling functionality. This functionality is complemented
by additional services in form of expansion modules, such
as sound and network support. The expansion modules are
still under development and hence not described in this pa-
per.

3.1. 2D Graphic Engine

Minueto’s core component includes a 2D graphic engine
designed for raster/bitmap graphics. The core classes of
this module are MinuetoWindow and MinuetoImage.
MinuetoWindow is a drawing canvas that contains sev-
eral graphic programming enhancements, such as the dou-
ble buffering system. It also insures that images are drawn
with the correct color depth and are hardware acceler-
ated. Optimizations specific to windowed-mode display
or full screen display are contained in its two subclasses,
MinuetoFrame and MinuetoFullscreen, in order
to provide the smooth and flicker-free performance re-
quired for a game programming framework. In addition,
a MinuetoPanel subclass is currently being developed
to improve on Minueto-Swing interoperability.
MinuetoImages are the basic blocks of a Minueto

application. The different types of images available are
sub-classes of the MinuetoImage class. The class hi-
erarchy is shown in Figure 1. The MinuetoImageFile
class is used to load images from files. Various popular im-
age formats, such as JPEG, GIF and PNG are supported,
as are transparency channels found in several image for-
mats. The MinuetoRectangle and MinuetoCircle
classes are used to create images of rectangles and cir-
cles respectively. Minueto includes functions to scale, ro-
tate or crop images. These functions are built into the
MinuetoImage class and return new transformed copies
of the image. The original image, however, remains un-
changed. Complex new images can be created dynami-
cally by drawing several simple images on a common blank

MinuetoImage

<< create >>+MinuetoImage(iX:int,iY:int):MinuetoImage

+crop(iCornerX:int,iCornerY:int,iSizeX:int,iSizeY:int):MinuetoImage

+rotate(dAngle:double):MinuetoImage

+scale(dFactorX:double,dFactorY:double):MinuetoImage

+flip(bHorizontal:boolean,bVertical:boolean):MinuetoImage

+draw(mimImage:MinuetoImage,iX:int,iY:int):void

+drawLine(mcoColor:,iXStart:int,iYStart:int,iXStop:int,iYStop:int):void

+getWidth():int

+getHeight():int

+save(strFilename:String):void

+clone():Object

MinuetoText

<< create >>+MinuetoText(strText:String,mfoFont:,mcoColor:):MinuetoText

<< create >>+MinuetoText(strText:String,mfoFont:,mcoColor:,bAntiAliased:boolean):MinuetoText

+setUpText(strText:String,mfoFont:,mcoColor:,bAntiAliased:boolean):void

MinuetoRectangle

<< create >>+MinuetoRectangle(iSizeX:int,iSizeY:int,mcoColor:,bFill:boolean):MinuetoRectangle

MinuetoCircle

<< create >>+MinuetoCircle(iSizeX:int,iSizeY:int,mcoColor:,bFill:boolean):MinuetoCircle

<< create >>+MinuetoCircle(iRadius:int,mcoColor:,bFill:boolean):MinuetoCircle

MinuetoImageFile

<< create >>+MinuetoImageFile(strFilename:String):MinuetoImageFile

Figure 1. The Minueto Image Hierarchy

MinuetoImage.

3.2. Keyboard and Mouse Input

In a traditional GUI application, keyboard/mouse in-
put is handled by an intuitive event-based system. A GUI
framework, such as Swing [4], usually provides a multitude
of common GUI components, such as panels and buttons.
A programmer can instantiate the desired components and
position them on the screen. To define the behavior that is
executed when a component is activated, the programmer
has to implement a pre-defined interface, often called a lis-
tener, within an object and register that object with the GUI
component. At run-time, the GUI framework is in control.
When a user presses the keyboard or moves the mouse, an
appropriate event is created. Then, the main thread (or a
thread created just for this event) finds the GUI component
that the event was addressed to, which in turn dispatches
the call to the listener code provided by the programmer.

The event-based way of handling user input is very in-
tuitive. Students that learnt Java as their first programming
language have been exposed to event-based systems since
the beginning of their studies. In addition, listeners make
it possible to implement behavior in a fine-grained way,
and to distribute that behavior over several objects. Rigor-
ous object-oriented analysis and design approaches assigns
well-defined responsibilities to objects, and using listeners
behavior that falls into the responsibilities of an object can

be encapsulated within, which results in a design with high
cohesion.

Unfortunately, the event-based way of handling user in-
put can not be used in this form in a game environment.
Games have to deliver steady performance. In a classical
event-based system, the programmer has no control over
when events are handled (and which thread handles them).
A sudden burst of input events could delay screen updates
temporarily, and hence result in sluggish game play.

To avoid this situation, games keep control of the pro-
cessor at all times. A classical game implementation usu-
ally contains a main loop as shown in Figure 2 that executes
over and over again.

Within the loop, the first step is to check for new user in-
put. Based on the input, the game state is updated. In non-
object-oriented systems, behavior is usually implemented
in a massive switch statement containing hundreds of case
blocks, which are very difficult to maintain. To prevent
irregular performance, excess input events are either dis-
carded or postponed to the next cycle. In the next step of
the game loop, the game time is advanced and the game
state updated accordingly. Finally, the next screen image is
created based on the new game state and displayed on the
screen.

Initialize

Game

Update State

Based on Input

Advance

Time

Draw New

Frame

Game

Finished?

End Of Game

no

yes

Player Input

Detected?

yes

no

Figure 2. Simple Gameloop Control Flow

3.3. Minueto Input

Minueto input combines the flexibility of event-based
systems while giving the programmer fine-grained con-
trol over input handling during the main game loop. In
the background, invisible to the user, a thread monitors
all inputs devices. Whenever a user presses a key or
uses the mouse, the thread creates a corresponding event
and places it into a first-in-first-out queue, an instance of
MinuetoEventQueue.

To define the behavior for a certain type of input, a pro-
grammer can implement a predefined interface, for exam-
ple MinuetoMouseHandler, and register it with the
queue. This technique makes it possible, for instance, to
separate mouse handling from keyboard handling. Han-
dlers can also be switched at run-time, which makes it pos-
sible to achieve different behavior depending on the cur-
rent view of the game. With a little effort, elegant design
patterns such as model-view-controller [5] can be imple-
mented on top of handlers.

However, handlers are not automatically executed when
a corresponding input event is put into the queue. The main
game thread performing the game loop (or game threads,
if desired) must call the handle() method of the queue
whenever it is ready for input processing. Each call to
handle() processes one single event. When an event is

processed, the appropriate method in the registered handler
is called. For example, when a key press is processed, the
handle()method executes the keyPress()method in
the registered keyboard handler.

4. Performance Evaluation

Given the interpreted nature of Java and the slow per-
formance of Swing when used for game development, we
conducted a series of performance tests on the Java 2D en-
gine before committing to a full Java implementation of
Minueto. The results of the benchmark are also representa-
tive for the current version of Minueto.

4.1. Benchmarks

The first benchmark, BlackWizardGrass, features a
small character sprite that can be moved over a field of
grass using the keyboard. The field of grass is a tile map
composed of grass tiles of 32x32 pixel size. The grass field
is redrawn, tile-by-tile, at every frame. The sprite charac-
ter is animated using eight 32x32 pixel tiles, each of which
depicts a different orientation or step in the walk cycle of
the character. One of these tiles is displayed at each frame,
depending on the character’s current orientation and step.
The benchmark runs in a 800 by 600 pixel window.

The second benchmark, TownMap, is more elaborate.
It features three small character sprites walking over a
slightly more complex tile map. The tile map is composed
of several different 32x32 pixels tiles, some of them depict-
ing the edge of a small cliff. The user can control one of the
characters. The two other characters move randomly. Like
in the previous benchmark, each of the characters has eight
animation tiles. A screenshot of the TownMap benchmark
is shown in figure 31.

4.2. Benchmark Results

The benchmarks were run on 15 computers, all equipped
with a variety of processor, operating system and video
hardware. Both benchmarks were run in fullscreen and
in windowed mode2. The results for windowed mode are
shown in the top part, the results for fullscreen mode in
the bottom part of figure 4. During startup, all bench-
marks showed large instabilities in frame rates. However,
the frame rate was only recorded after some seconds, once
the game had stabilized.

Minueto’s performance on mid and high-end systems
was more than satisfying. The only disappointing perfor-

1The sprite graphics used in the TownMap benchmark are copyright of
their respective owners and are only used for demonstration purposes.

2Fullscreen mode was at that time not supported under Linux, hence
fullscreen performance data is unavailable for that operating system.

!"#$%&'()'*+++,-'./0%12/'34++-'56&7%89-':;<'=>3>+

!"#$%&'?@'A+++,-'B*'BCDCE/'A+++-'56&7%89-':;<'=>)>A

!"#$%&'?@'A+++,-'./0%12/')'FG-'56&7%89-':;<'=>3>+

@/&"6HI'*'J**'<#K-'./0%12/')'<?-'56&7%8-':;<'=>)>A'

L/$/1%&'3++'<#K-'./0%12/')'<?-'56&7%89-':;<'=>)>='

!"#$%&'()'*+++,-'./0%12/'34++'MH&C22>'716D/19N-'O6&HP-':;<'=>3>+

@/&"6HI')'A((+'<#K-'./0%12/')'FG-'O6&HP-':;<'=>)>A

!"#$%&'?@'A+++,-'./0%12/')'FG-'O6&HP-':;<'=>)>A

@/&"6HI'*'J**'<#K-'./0%12/')'<?'MH&C22>'716D/19N-'O6&HP-':;<'=>)>A

@/&"6HI'A'***'<#K-'!FG'QCE/-'O6&HP-':;<'=>)>A

RHC$'.3'A3++'<#K-'./0%12/'(4++'S$"1C-'<C2T9'?-':;<'=>)>A

.)'=A++'<#K-'QC7/%&'UJ++-'<C2T9'?-':;<'=>3>+

.)'4++'<#K-'QC7/%&'UA++-'<C2T9'?-':;<'=>)>A

.)'4++'<#K-'./0%12/')'<?-'<C2T9'?-':;<'=>)>A

+ A3 3+ J3 =++ =A3 =3+ =J3 A++ AA3 A3+ AJ3 *++ *A3 *3+ *J3)++)A3

V$C2W'56KC17'.1C99'R/I%

F%8&'<CX'R/I%

Y1CI/'1C"/'M6&'01CI/9'X/1'9/2%&79N

!"#$%&'()'*+++,-'./0%12/'34++-'56&7%89-':;<'=>3>+

!"#$%&'?@'A+++,-'B*'BCDCE/'A+++-'56&7%89-':;<'=>)>A

!"#$%&'?@'A+++,-'./0%12/')'FG-'56&7%89-':;<'=>3>+

@/&"6HI'*'J**'<#K-'./0%12/')'<?-'56&7%8-':;<'=>)>A

L/$/1%&'3++'<#K-'./0%12/')'<?-'56&7%89-':;<'=>)>=

MHC$'.3'A3++'.#K-'./0%12/'(4++'N$"1C-'<C2O9'?-':;<'=>)>A'

.)'=A++'<#K-'PC7/%&'QJ++-'<C2O9'?-':;<'=>3>+

.)'4++'<#K-'PC7/%&'QA++-'<C2O9'?-':;<'=>)>A

.)'4++'<#K-./0%12/')'<?-'<C2O9'?-':;<'=>)>A

+ 3 =+ =3 A+ A3 *+ *3)+)3 3+ 33 (+ (3 J+ J3

R$C2S'56KC17'.1C99'M/I%

F%8&'<CT'M/I%

U1CI/'1C"/'V6&'01CI/9'T/1'9/2%&79W

Figure 4. Frame Rates for Black Wizard Grass and Town Map in Windowed (top) and Fullscreen (bottom) Mode

Figure 3. Screenshot of the TownMap Benchmark

mance, namely 22 fps, was achieved on a rather low-end
system, a Pentium 2 333 MHz with an ATI Rage graphics
card running JVM 1.4.2 under Linux. All other systems
reached or exceeded the desired 30 fps that are required
for visually smooth animations. The top performance was
achieved on a Athlon 64 3 GHz with a GeForce 5800 graph-
ics card running Windows and JVM 1.5.0. On this ma-
chine, the first benchmark achieved 425 fps, whereas the
second one reached an impressive 400 fps.

Several other interesting conclusions can be drawn from
the collected results:

• Frame rates for fullscreen are capped at 60 or 75 fps.
This suggests that the frame rate for an application in
fullscreen mode is limited by the refresh rate of the
screen. This is not a problem since a frame rate higher
than the refresh rate of the screen is useless.

• The Athlon XP 2000+ equipped with the S3 Savage
2000 video card suffers from poor performance, espe-
cially when compared to its GeForce 4 TI counterpart.
This would suggest that poor video hardware can have
a significant impact on Minueto.

• The Athlon64 3000+ using unaccelerated drivers pro-
vided a very bad performance under Linux. How-
ever, the Pentium 3 733 MHz, using the same drivers,
offered a similar performance. This suggests that
the performance of the Linux unaccelerated drivers is
capped.

• Relatively poor performance was obtained by the 800
MHz MacOs X computer. Although it is already
known that the Apple JVM is slower than the Sun
JVM, faster MacOS X computers do offer reasonable
frame rates when using Minueto. The 1.2 GHz Power-
book presented a surprisingly high (for MacOS X)
frame rate. This suggests that the Apple’s JVM 1.5

does offer an important increase in Java 2D’s speed.

5. Minueto Documentation

Students have different learning habits, and a good doc-
umentation should account for that. This is why Minueto’s
documentation is available in three different formats: tuto-
rials, examples and the API specification.

5.1. Tutorials

On the Minueto website
(http://minueto.cs.mcgill.ca) students can
find a collection of tutorials. By reading these HowTo doc-
uments, students can gain insight on how to achieve basic
tasks with Minueto and how to solve common problems.
The tutorials explain, using illustrations, every specific
game programming aspect, such as double buffering, and
the way that functionality is provided in Minueto. This
type of documentation targets students who prefer learning
by reading books and manuals.

5.2. Sample Code

It has been shown that the difference between a novice
and an expert chess player is the fact that the latter has
thousands of board configuration stored in his long time
memory [6]. Expert players can use these memorized board
configurations to derive their next move without having to
rely too much on their limited working memory. Further
research has shown that problem solving relies more on
stored memories than complex reasoning [7]. This theory
can easily be extended to programmers, where the differ-
ence between a novice and an expert is years of problem
solving experience [8]. An experienced programmer can
draw upon years of previous programming challenges to
find similarities between previous and current problems.

The Minueto documentation provides this “experience”
to novice game programmers by means of a multitude of
code examples that cover a wide range of topics. Each
example is designed to solve exactly one problem, for in-
stance, how to draw a rectangle on the screen. This allows
the code for the examples to be as short as possible, typ-
ically less than 10 lines of code, thus making it very easy
for students to understand. Each sample code is a com-
plete stand-alone application that can be compiled and run
as is. As a result, the student can instantly gain hands-on
experience with the Minueto framework, and start exper-
imenting with Minueto by making small modifications to
the provided code.

5.3. API Specification

The last type of documentation is the API specification.
Students that have already taken a Java class are already
familiar with the Java way of describing APIs. This is why
Minueto’s API documentation is built using the standard
JavaDoc tool and follows the documentation guidelines for
Java applications as outlined by Sun Microsystems [9]. A
detailed API specification is essential, especially in later
phases of the project.

6. Student Evaluation

6.1. Background

Minueto has been developed as an infrastructure for the
COMP-361 Systems Development Project class taught at
the School of Computer Science at McGill University. The
class was first taught in Winter 2004 as part of the new
Software Engineering program. The 38 students had to im-
plement a computerized version of Battleships.

Since Minueto was not yet available at that time, the
students were not given any particular game programming
framework. They were allowed to use the programming
language and platform of their choice. Most of the students
decided on using the Java programming language and im-
plemented their user interface based on Swing, some used
C++ and DirectX, or Python and PyGame (a game devel-
opment framework for Python).

Students were required to attend weekly meetings with
the professor to monitor their progress. Three months into
the development of their projects, students were called to
a special meeting to present a first “demo” – a working
version of their game – with a minimal set of features.

The weekly meetings, the final game implementations
and the feedback from the students showed that working
on a game is indeed very motivating for most students. Un-
fortunately, though, most teams struggled with graphic pro-
gramming and graphic performance issues. The technical
difficulties experienced by some groups did not give them
enough time to deliver a fully functional product. Based on
these observations, the development of Minueto was initi-
ated.

6.2. Effects of Using Minueto

In the next session of the course in Winter 2005, we of-
fered the 36 students the possibility to use Minueto to im-
plement their project – a turn-based strategy game played
on land and sea. Although the students were free to use
the technology and programming language of their choice,
they were warned that technical support would only be pro-
vided for Java and Minueto. This was a practical decision,

since actively supporting multiple game development plat-
forms is a heavy burden on both the professor and his teach-
ing assistants.

In the first week of classes already, a small Minueto
demo application was posted on the class bulletin board
by a student. After the class presentation of Minueto in
week 3, about 60% of the class decided on using Minueto.

This had a very positive effect on the weekly group
meetings. The number of technical complaints and prob-
lems dramatically decreased, and more time was spent on
discussing architectural and design decisions. An increase
in the quality of the projects was also noticed during the
“demo” and final presentations. The creativity of some of
the student’s projects was amazing. Several of Minueto’s
features had been used in ingenious ways, expanding our
vision of Minueto’s capabilities. Although the top projects
from 2005 were not necessarily superior to the top projects
from the previous year, the quality of the average projects
had greatly increased. The games looked more professional
and polished, and the Minueto-using groups were able to
present a product that provided all of the required function-
ality.

Over the last year, based on the feedback from the stu-
dents of Winter 2005, Minueto matured further. Additional
features such as support for transparency were added. The
current version of Minueto is so convincing that 100% of
the 33 students of Winter 2006 used it to implement their
project – a turn-based space game. The students were ex-
tremely happy with Minueto’s features and performance.

6.3. Student Suggestions

Some students would have liked to see elaborate Swing-
like GUI components offered in Minueto. Although such
components are often used in computer games, it is a non-
trivial task to integrate them into a game programming
framework. Care must be taken to not degrade perfor-
mance, and to continue to provide a clean, simple and easy
to learn interface. We are currently evaluating a possible
Minueto-Swing integration, or else plan to provide simple
GUI components, such as buttons and textboxes, directly in
Minueto.

7. Related Work

Although a multitude of game development frameworks
and tools have emerged in the past years, most of them
have been designed for the professional industry. These
game development kits or game engines, as they are of-
ten called, are extremely powerful, providing sophisticated
3D graphics, real-time physics and AI scripting languages.
Their difficult learning curves and their price tag, however,
make them ill-suited for the academic world. A review of

open source game development frameworks such as SDL
[10] has shown that they too are complicated to learn, and
not suited for a typical undergraduate course. Some game
development kits also often force the developer to use a
particular programming language or a specific development
platform.

One notable exception is the Panda3D game engine,
which is specifically designed to have a short learning
curve and promote rapid development [11]. However,
Panda3D was primarily designed to create 3D virtual
worlds. The added complexity of a 3D environment and
animation would adversely shift the focus away from the
software engineering tasks. In addition, Panda3D is only
available on specific operating systems.

Several teaching tools for game programming are also
available. With their visual interface and custom scripting
languages, Alice [12] and GameMaker [13] are designed
to provide the best introduction to programming for high
school and college students. However, our target popula-
tion, the students of COMP-361, have alread completed at
least three programming courses at the undergraduate level:
introduction to computer science, introduction to software
systems, and algorithms and data structures. Rather than
teaching them new programming techniques, we would
like students to gain experience in developing an object-
oriented application of considerable size using the tech-
niques they already learnt.

8. Conclusions

Developing a game is very motivating for students, but
without a development framework, students have to mas-
ter advanced programming techniques to deliver smooth
graphics. Fighting with many low-level technical problems
or sluggish gameplay removes the fun and prevents the stu-
dents from focussing on software architecture and design.

In this paper we presented Minueto, a cross-platform,
Java-based game development framework specifically de-
signed for undergraduate software engineering project
courses. Minueto simplifies game development for students
by hiding complex game programming details (full-screen
mode, double-buffering, hardware acceleration) behind a
simple-to-use interface. The large quantity of documen-
tation, tutorials and sample code allows students familiar
with basic Java programming to start developing games af-
ter a very short learning period. Students can get visually
appealing results with very little effort. Despite of being
implemented in pure Java, Minueto achieves frame rates of
over 60 frames-per-second on mid-range Windows, Linux
and Macintosh systems. The purpose of Minueto is not to
teach programming, but to reduce the burden of game de-
velopment, and allow students to focus on software devel-
opment tasks such as object-oriented design.

The experience gained by introducing Minueto into
the COMP-361 Systems Development Project course at
McGill University has demonstrated that Minueto lives up
to our expectations. It reduced the amount of time that was
spent during weekly meetings discussing graphic-related
technical issues, and improved the overall quality, look and
performance of the final deliverables.

9. Acknowledgments

We would like to thank the students of the course
COMP-361 Systems Development Project taught at the
School of Computer Science of McGill University in Win-
ter 2004, Winter 2005 and Winter 2006 for their enthou-
siasm and constructive feedback. Without their help the
development of Minueto would not have been possible.

References

[1] R. Rucker, Software Engineering and Computer Games.
Addison Wesley, 2003.

[2] S. Schaefer and J. Warren, “Teaching computer game
design and construction,” Computer-Aided Design, vol. 36,
December 2004.

[3] J. Gosling, B. Joy, and G. L. Steele, The Java Language
Specification. The Java Series, Reading, MA, USA:
Addison Wesley, 1996.

[4] Sun Microsystems, “Java Foundation Classes
(JFC/Swing).” http://java.sun.com/products/jfc/, 2006.

[5] G. E. Krasner and S. T. Pope, “A cookbook for using the
model-view-controller user interface paradigm in
smalltalk-80,” Journal of Object-Oriented Programming,
vol. 1, pp. 26 – 49, August 1988.

[6] H. Simon and K. Gilmartin, “A simulation of memory for
chess positions,” Cognitive Psychology, 1973.

[7] C. W., “Using worked examples as an instructional support
in the algebra classroom,” Journal of Education, 1994.

[8] Garner and Stuart, “Reducing the cognitive load on novice
programmers,” Association for the Advancement of
Computing in Education (AACE), p. 7, June 2002.

[9] Sun Microsystems, “How to write doc comments for the
javadoc tool.”
http://java.sun.com/j2se/javadoc/writingdoccomments/,
2000.

[10] “Simple Directmedia Layer.” http://www.libsdl.org/, 2006.
[11] Carnegie Mellon University, “Panda3D.”

http://www.panda3d.org/, 2006.
[12] Carnegie Mellon University, “Alice.” http://www.alice.org/,

2006.
[13] M. Overmars, “Gamemaker.” http://www.gamemaker.nl/,

2006.

